An Educational Tool to Explore the Dynamics of Subatomic Physics Interactions

Belle II Detector

The goal of this project is to develop a new immersive educational tool for experimental subatomic physics using a virtual reality (visual + sound) world in the ICAT Cube. The virtual reality environment will have a static, time-independent model of the Belle II detector within a dynamic world wherein the learners will investigate the collisions of subatomic particles - electrons and anti-electrons - and the byproducts of these collisions as these byproducts move through and interact with the physical structures and material of the Belle II detector. Within the team-learning environment of the Cube, students will be able to discover new ways of understanding and participating in cutting edge research in particle physics with the goal of producing publishable results.

Participants: Leo Piilonen, Physics; George Glas- son, School of Education; Nicholas Polys, Computer Science; Dane Webster, School of Visual Arts; Todd Ogle, TLOS; Zach Duer, ICAT; Jesse Barber, Physics; Tanner Upthegrove, ICAT

Type: Design, Education, Computer Science, Human Science, Natural Science

Date: July 1, 2016 - June 30, 2017